Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Jiang, J., Xu, L., Qiu, C. & Peng, L. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).
Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).
Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).
Hu, W. et al. Ambipolar 2D semiconductors and emerging device applications. Small Methods 5, 2000837 (2020).
Yu, X., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016).
Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).
Pei, J. et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).
Kong, L., Chen, Y. & Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 14, 1768–1783 (2021).
Xiong, Y. et al. P-type 2D semiconductors for future electronics. Adv. Mater. 35, 2206939 (2023).
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
Zhao, Z. et al. A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nat. Commun. 14, 958 (2023).
Balan, A. et al. Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications. Mater. Today 58, 164–200 (2022).
Li, N. et al. Synthesis and optoelectronic applications of a stable p-type 2D material: α-MnS. ACS Nano 13, 12662–12670 (2019).
Kaur, H. & Coleman, J. N. Liquid-phase exfoliation of nonlayered non-van-der-Waals crystals into nanoplatelets. Adv. Mater. 34, 2202164 (2022).
Liu, K. et al. Puffing ultrathin oxides with nonlayered structures. Sci. Adv. 8, eabn2030 (2022).
Xiao, X. et al. Facile large-scale synthesis of β-Bi2O3 nanosphere as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Appl. Catal. B Environ. 140–141, 433–443 (2013).
Gong, Q. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019).
Qiu, Y. et al. Controlled synthesis of bismuth oxide nanowires by an oxidative metal vapor transport deposition technique. Adv. Mater. 18, 2604–2608 (2006).
Pérez-Mezcua, D. et al. Photochemical solution processing of films of metastable phases for flexible devices: the β-Bi2O3 polymorph. Sci. Rep. 6, 39561 (2016).
Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).
Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).
Zhang, B. Y. et al. Hexagonal metal oxide monolayers derived from the metal–gas interface. Nat. Mater. 20, 1073–1078 (2021).
Zavabeti, A. et al. High-mobility p-type semiconducting two-dimensional β-TeO2. Nat. Mater. 4, 277–283 (2021).
CAS Google Scholar
Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).
Salazar-Pérez, A. J. et al. Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles. Superf. Vacío 18, 4–8 (2005).
Pereira, A. L. J. et al. Isostructural second-order phase transition of β-Bi2O3 at high pressures: an experimental and theoretical study. J. Phys. Chem. C 118, 23189–23201 (2014).
Tran‐Phu, T. et al. Nanostructured β‐Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv. Funct. Mater. 30, 1906478 (2019).
Wu, J. et al. Epitaxial growth of 2D ultrathin metastable γ-Bi2O3 flakes for high performance ultraviolet photodetection. Small 18, 2104244 (2021).
Yang, J. et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater. 18, 970–976 (2019).
Weng, S. et al. Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem. A 1, 3068–3075 (2013).
Li, S. et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018).
Bellet-Amalric, E. et al. Regulated dynamics with two monolayer steps in vapor–solid–solid growth of nanowires. ACS Nano 16, 4397–4407 (2022).
Greyson, E. C., Babayan, Y. & Odom, T. W. Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater. 16, 1348–1352 (2004).
Yang, P. et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics. ACS Nano 13, 3649–3658 (2019).
Li, S. et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1, 60–66 (2015).
Wu, J., Mao, N., Xie, L., Xu, H. & Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. 54, 2366–2369 (2015).
Wu, J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).
Mark, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Shi, J. et al. Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Adv. Mater. 33, 2006230 (2021).
Heinemann, M., Eifert, B. & Heiliger, C. Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys. Rev. B 87, 115111 (2013).
Quackenbush, N. F. et al. Origin of the bipolar doping behavior of SnO from X-ray spectroscopy and density functional theory. Chem. Mater. 25, 3114–3123 (2013).
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
Zhao, T. et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52, 1650–1671 (2023).
Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).
Zhang, X. et al. Molecule-upgraded van der Waals contacts for Schottky-barrier-free electronics. Adv. Mater. 33, 2104935 (2021).
Kong, L. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).
Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).
Zhou, H. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15, 709–713 (2015).
Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).